Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 210: 406-415, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061606

RESUMEN

BACKGROUND AND AIMS: Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established. METHODS: In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr-/-) mice on separate DC subsets, their compartmentalization and functionality. RESULTS: While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells. CONCLUSION: Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Ratones , Animales , Linfocitos T , Especies Reactivas de Oxígeno/metabolismo , Hipercolesterolemia/genética , Células Dendríticas , Aterosclerosis/metabolismo , Lípidos
2.
Front Immunol ; 14: 1165306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920458

RESUMEN

Introduction: Inhibition of STAT5 was recently reported to reduce murine atherosclerosis. However, the role of STAT5 isoforms, and more in particular STAT5A in macrophages in the context of human atherosclerosis remains unknown. Methods and results: Here, we demonstrate reciprocal expression regulation of STAT5A and STAT5B in human atherosclerotic lesions. The former was highly upregulated in ruptured over stable plaque and correlated with macrophage presence, a finding that was corroborated by the high chromosomal accessibility of STAT5A but not B gene in plaque macrophages. Phosphorylated STAT5 correlated with macrophages confirming its activation status. As macrophage STAT5 is activated by GM-CSF, we studied the effects of its silencing in GM-CSF differentiated human macrophages. STAT5A knockdown blunted the immune response, phagocytosis, cholesterol metabolism, and augmented apoptosis terms on transcriptional levels. These changes could partially be confirmed at functional level, with significant increases in apoptosis and decreases in lipid uptake and IL-6, IL-8, and TNFa cytokine secretion after STAT5A knockdown. Finally, inhibition of general and isoform A specific STAT5 significantly reduced the secretion of TNFa, IL-8 and IL-10 in ex vivo tissue slices of advanced human atherosclerotic plaques. Discussion: In summary, we identify STAT5A as an important determinant of macrophage functions and inflammation in the context of atherosclerosis and show its promise as therapeutic target in human atherosclerotic plaque inflammation.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transactivadores/genética , Factor de Transcripción STAT5/metabolismo , Interleucina-8/metabolismo , Transducción de Señal , Macrófagos , Aterosclerosis/metabolismo , Inflamación/metabolismo , Proteínas Supresoras de Tumor/metabolismo
3.
Cardiovasc Res ; 119(11): 2033-2045, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161473

RESUMEN

Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Humanos , Monocitos/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Infarto del Miocardio/metabolismo , Receptores de IgG/metabolismo , Receptores de Lipopolisacáridos
4.
Front Immunol ; 14: 1078591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969194

RESUMEN

Macrophages (MΦ) are commonly cultured in vitro as a model of their biology and functions in tissues. Recent evidence suggests MΦ to engage in quorum sensing, adapting their functions in response to cues about the proximity of neighboring cells. However, culture density is frequently overlooked in the standardization of culture protocols as well as the interpretation of results obtained in vitro. In this study, we investigated how the functional phenotype of MΦ was influenced by culture density. We assessed 10 core functions of human MΦ derived from the THP-1 cell line as well as primary monocyte-derived MΦ. THP-1 MΦ showed increasing phagocytic activity and proliferation with increasing density but decreasing lipid uptake, inflammasome activation, mitochondrial stress, and secretion of cytokines IL-10, IL-6, IL-1ß, IL-8, and TNF-α. For THP-1 MΦ, the functional profile displayed a consistent trajectory with increasing density when exceeding a threshold (of 0.2 x 103 cells/mm2), as visualized by principal component analysis. Culture density was also found to affect monocyte-derived MΦ, with functional implications that were distinct from those observed in THP-1 MΦ, suggesting particular relevance of density effects for cell lines. With increasing density, monocyte-derived MΦ exhibited progressively increased phagocytosis, increased inflammasome activation, and decreased mitochondrial stress, whereas lipid uptake was unaffected. These different findings in THP-1 MΦ and monocyte-derived MΦ could be attributed to the colony-forming growth pattern of THP-1 MΦ. At the lowest density, the distance to the closest neighboring cells showed greater influence on THP-1 MΦ than monocyte-derived MΦ. In addition, functional differences between monocyte-derived MΦ from different donors could at least partly be attributed to differences in culture density. Our findings demonstrate the importance of culture density for MΦ function and demand for awareness of culture density when conducting and interpreting in vitro experiments.


Asunto(s)
Inflamasomas , Macrófagos , Humanos , Inflamasomas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fenotipo , Lípidos
5.
Cardiovasc Res ; 119(7): 1509-1523, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36718802

RESUMEN

AIMS: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION: We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Hipercolesterolemia/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Colágeno/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Envejecimiento/genética , Fibroblastos/metabolismo , Colesterol/metabolismo
6.
Adv Sci (Weinh) ; 10(5): e2203053, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526599

RESUMEN

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.


Asunto(s)
Macrófagos , Infarto del Miocardio , Humanos , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Pronóstico , Redes Reguladoras de Genes
7.
Proc Natl Acad Sci U S A ; 119(12): e2114739119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302892

RESUMEN

In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet­associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Humanos , Inflamación/metabolismo , Gotas Lipídicas/metabolismo , Lípidos , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Triglicéridos/metabolismo
8.
Front Cell Dev Biol ; 9: 695684, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458258

RESUMEN

BACKGROUND: The protein 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a key stimulator of glycolytic flux. Systemic, partial PFKFB3 inhibition previously decreased total plaque burden and increased plaque stability. However, it is unclear which cell type conferred these positive effects. Myeloid cells play an important role in atherogenesis, and mainly rely on glycolysis for energy supply. Thus, we studied whether myeloid inhibition of PFKFB3-mediated glycolysis in Ldlr-/-LysMCre+/-Pfkfb3 fl/fl (Pfkfb3 fl/fl ) mice confers beneficial effects on plaque stability and alleviates cardiovascular disease burden compared to Ldlr-/-LysMCre+/-Pfkfb3 wt/wt control mice (Pfkfb3 wt/wt ). METHODS AND RESULTS: Analysis of atherosclerotic human and murine single-cell populations confirmed PFKFB3/Pfkfb3 expression in myeloid cells, but also in lymphocytes, endothelial cells, fibroblasts and smooth muscle cells. Pfkfb3 wt/wt and Pfkfb3 fl/fl mice were fed a 0.25% cholesterol diet for 12 weeks. Pfkfb3 fl/fl bone marrow-derived macrophages (BMDMs) showed 50% knockdown of Pfkfb3 mRNA. As expected based on partial glycolysis inhibition, extracellular acidification rate as a measure of glycolysis was partially reduced in Pfkfb3 fl/fl compared to Pfkfb3 wt/wt BMDMs. Unexpectedly, plaque and necrotic core size, as well as macrophage (MAC3), neutrophil (Ly6G) and collagen (Sirius Red) content were unchanged in advanced Pfkfb3 fl/fl lesions. Similarly, early lesion plaque and necrotic core size and total plaque burden were unaffected. CONCLUSION: Partial myeloid knockdown of PFKFB3 did not affect atherosclerosis development in advanced or early lesions. Previously reported positive effects of systemic, partial PFKFB3 inhibition on lesion stabilization, do not seem conferred by monocytes, macrophages or neutrophils. Instead, other Pfkfb3-expressing cells in atherosclerosis might be responsible, such as DCs, smooth muscle cells or fibroblasts.

9.
Cells ; 10(7)2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34359916

RESUMEN

Platelet-derived growth factor B (PDGF-B) is a mitogenic, migratory and survival factor. Cell-associated PDGF-B recruits stabilizing pericytes towards blood vessels through retention in extracellular matrix. We hypothesized that the genetic ablation of cell-associated PDGF-B by retention motif deletion would reduce the local availability of PDGF-B, resulting in microvascular pericyte loss, microvascular permeability and exacerbated atherosclerosis. Therefore, Ldlr-/-Pdgfbret/ret mice were fed a high cholesterol diet. Although plaque size was increased in the aortic root of Pdgfbret/ret mice, microvessel density and intraplaque hemorrhage were unexpectedly unaffected. Plaque macrophage content was reduced, which is likely attributable to increased apoptosis, as judged by increased TUNEL+ cells in Pdgfbret/ret plaques (2.1-fold) and increased Pdgfbret/ret macrophage apoptosis upon 7-ketocholesterol or oxidized LDL incubation in vitro. Moreover, Pdgfbret/ret plaque collagen content increased independent of mesenchymal cell density. The decreased macrophage matrix metalloproteinase activity could partly explain Pdgfbret/ret collagen content. In addition to the beneficial vascular effects, we observed reduced body weight gain related to smaller fat deposition in Pdgfbret/ret liver and adipose tissue. While dampening plaque inflammation, Pdgfbret/ret paradoxically induced systemic leukocytosis. The increased incorporation of 5-ethynyl-2'-deoxyuridine indicated increased extramedullary hematopoiesis and the increased proliferation of circulating leukocytes. We concluded that Pdgfbret/ret confers vascular and metabolic effects, which appeared to be protective against diet-induced cardiovascular burden. These effects were unrelated to arterial mesenchymal cell content or adventitial microvessel density and leakage. In contrast, the deletion drives splenic hematopoiesis and subsequent leukocytosis in hypercholesterolemia.


Asunto(s)
Aterosclerosis/metabolismo , Hematopoyesis Extramedular , Proteínas Proto-Oncogénicas c-sis/metabolismo , Animales , Apoptosis , Peso Corporal , Movimiento Celular , Proliferación Celular , Leucocitos/patología , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Solubilidad
10.
Cells ; 10(8)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34440866

RESUMEN

BACKGROUND: Vascular calcification is an active process that increases cardiovascular disease (CVD) risk. There is still no consensus on an appropriate biomarker for vascular calcification. We reasoned that the biomarker for vascular calcification is the collection of all blood components that can be sensed and integrated into a calcification response by human vascular smooth muscle cells (hVSMCs). METHODS: We developed a new cell-based high-content assay, the BioHybrid assay, to measure in vitro calcification. The BioHybrid assay was compared with the o-Cresolphthalein assay and the T50 assay. Serum and plasma were derived from different cohort studies including chronic kidney disease (CKD) stages III, IV, V and VD (on dialysis), pseudoxanthoma elasticum (PXE) and other cardiovascular diseases including serum from participants with mild and extensive coronary artery calcification (CAC). hVSMCs were exposed to serum and plasma samples, and in vitro calcification was measured using AlexaFluor®-546 tagged fetuin-A as calcification sensor. RESULTS: The BioHybrid assay measured the kinetics of calcification in contrast to the endpoint o-Cresolphthalein assay. The BioHybrid assay was more sensitive to pick up differences in calcification propensity than the T50 assay as determined by measuring control as well as pre- and post-dialysis serum samples of CKD patients. The BioHybrid response increased with CKD severity. Further, the BioHybrid assay discriminated between calcification propensity of individuals with a high CAC index and individuals with a low CAC index. Patients with PXE had an increased calcification response in the BioHybrid assay as compared to both spouse and control plasma samples. Finally, vitamin K1 supplementation showed lower in vitro calcification, reflecting changes in delta Agatston scores. Lower progression within the BioHybrid and on Agatston scores was accompanied by lower dephosphorylated-uncarboxylated matrix Gla protein levels. CONCLUSION: The BioHybrid assay is a novel approach to determine the vascular calcification propensity of an individual and thus may add to personalised risk assessment for CVD.


Asunto(s)
Músculo Liso Vascular/metabolismo , Calcificación Vascular/sangre , Biomarcadores/sangre , Proteínas de Unión al Calcio/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Células Cultivadas , Proteínas de la Matriz Extracelular/sangre , Colorantes Fluorescentes/química , Pruebas Hematológicas , Humanos , Cinética , Diálisis Renal , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Calcificación Vascular/diagnóstico , Vitamina K 1/uso terapéutico , alfa-2-Glicoproteína-HS/química , alfa-2-Glicoproteína-HS/metabolismo , Proteína Gla de la Matriz
12.
Ther Adv Med Oncol ; 12: 1758835920975621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33403016

RESUMEN

BACKGROUND: Merkel cell carcinoma (MCC) is a highly malignant skin cancer. Despite major treatment improvements during the last decade, up to 50% of patients do not respond to therapy or develop recurrent disease. For these patients, alternative treatment options are urgently needed. Here, we assessed the efficacy of the combination of the BCL-2 inhibitor Navitoclax and the PI3K p110α inhibitor Alpelisib in MCC cell lines. METHODS: The expression of BCL-2 was assessed by immunohistochemistry in MCC and MCC cell lines. Treatment with Navitoclax and Alpelisib alone and in combination was performed on four MCC cell lines. The decrease of cell viability during treatment was assessed by XTT assay and visualized for the combinations by 3D combinatorial index plotting. The increase of apoptotic cells was determined by cleaved PARP Western blotting and Annexin V staining. RESULTS: Some 94% of MCCs and all three MCPyV-positive cell lines showed BCL-2 expression. Navitoclax monotreatment was shown to be highly effective when treating BCL-2-positive cell lines (IC50-values ranging from 96.0 to 323.0 nM). The combination of Alpelisib and Navitoclax resulted in even stronger synergistic and prolonged inhibitions of MCC cell viability through apoptosis up to 4 days. DISCUSSION: Our results show that the anti-apoptotic BCL-2 is frequently expressed in MCC and MCC cell lines. Inhibition of BCL-2 by Navitoclax in combination with Alpelisib revealed a strong synergy and prolonged inhibition of MCC cell viability and induction of apoptosis. The combination of Navitoclax and Alpelisib is a novel potential treatment option for MCC patients.

13.
Arterioscler Thromb Vasc Biol ; 40(3): 697-713, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31826651

RESUMEN

OBJECTIVE: Long noncoding RNAs (lncRNAs) are an emergent class of molecules with diverse functional roles, widely expressed in human physiology and disease. Although some lncRNAs have been identified in cardiovascular disease, their potential as novel targets in the prevention of atherosclerosis is unknown. We set out to discover important lncRNAs in unstable plaque and gain insight into their functional relevance. Approach and Results: Analysis of RNA sequencing previously performed on stable and unstable atherosclerotic plaque identified a panel of 47 differentially regulated lncRNAs. We focused on LINC01272, a lncRNA upregulated in unstable plaque previously detected in inflammatory bowel disease, which we termed PELATON (plaque enriched lncRNA in atherosclerotic and inflammatory bowel macrophage regulation). Here, we demonstrate that PELATON is highly monocyte- and macrophage-specific across vascular cell types, and almost entirely nuclear by cellular fractionation (90%-98%). In situ hybridization confirmed enrichment of PELATON in areas of plaque inflammation, colocalizing with macrophages around the shoulders and necrotic core of human plaque sections. Consistent with its nuclear localization, and despite containing a predicted open reading frame, PELATON did not demonstrate any protein-coding potential in vitro. Functionally, knockdown of PELATON significantly reduced phagocytosis, lipid uptake and reactive oxygen species production in high-content analysis, with a significant reduction in phagocytosis independently validated. Furthermore, CD36, a key mediator of phagocytic oxLDL (oxidized low-density lipoprotein) uptake was significantly reduced with PELATON knockdown. CONCLUSIONS: PELATON is a nuclear expressed, monocyte- and macrophage-specific lncRNA, upregulated in unstable atherosclerotic plaque. Knockdown of PELATON affects cellular functions associated with plaque progression.


Asunto(s)
Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , ARN Largo no Codificante/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos CD36/genética , Antígenos CD36/metabolismo , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/patología , Células Cultivadas , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Macrófagos/patología , Masculino , Necrosis , Fagocitosis , ARN Largo no Codificante/genética , Especies Reactivas de Oxígeno/metabolismo , Rotura Espontánea
14.
Sci Rep ; 9(1): 14547, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601924

RESUMEN

The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1-/-) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1-/- compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1-/- peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1-/- mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.


Asunto(s)
Apoptosis , Células Gigantes/citología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células 3T3 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Diferenciación Celular , Eliminación de Gen , Humanos , Inmunohistoquímica , Lípidos/química , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neutrófilos/metabolismo , Fenotipo , Placa Aterosclerótica/metabolismo
15.
Sci Rep ; 7(1): 3086, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596542

RESUMEN

Proapoptotic Bcl-2 family member Bim is particularly relevant for deletion of autoreactive and activated T and B cells, implicating Bim in autoimmunity. As atherosclerosis is a chronic inflammatory process with features of autoimmune disease, we investigated the impact of hematopoietic Bim deficiency on plaque formation and parameters of plaque stability. Bim -/- or wild type bone marrow transplanted ldlr -/- mice were fed a Western type diet (WTD) for 5 or 10 weeks, after which they were immunophenotyped and atherosclerotic lesions were analyzed. Bim -/- transplanted mice displayed splenomegaly and overt lymphocytosis. CD4+ and CD8+ T cells were more activated (increased CD69 and CD71 expression, increased interferon gamma production). B cells were elevated by 147%, with a shift towards the pro-atherogenic IgG-producing B2 cell phenotype, resulting in a doubling of anti-oxLDL IgG1 antibody titers in serum of bim -/- mice. Bim -/- mice displayed massive intraplaque accumulation of Ig complexes and of lesional T cells, although this did not translate in changes in plaque size or stability features (apoptotic cell and macrophage content). The surprising lack in plaque phenotype despite the profound pro-atherogenic immune effects may be attributable to the sharp reduction of serum cholesterol levels in WTD fed bim -/- mice.


Asunto(s)
Aterosclerosis/genética , Enfermedades Autoinmunes/etiología , Proteína 11 Similar a Bcl2/deficiencia , Inflamación/etiología , Leucocitos/inmunología , Leucocitos/metabolismo , Receptores de LDL/deficiencia , Animales , Apoptosis/genética , Enfermedades Autoinmunes/patología , Proteína 11 Similar a Bcl2/genética , Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Hiperlipidemias , Inmunidad Humoral , Inmunoglobulinas/inmunología , Inflamación/patología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Receptores de LDL/genética , Esplenomegalia , Células TH1/inmunología , Células TH1/metabolismo
16.
Sci Rep ; 5: 15414, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26486587

RESUMEN

Clinical complications of atherosclerosis are almost exclusively linked to destabilization of the atherosclerotic plaque. Batf3-dependent dendritic cells specialize in cross-presentation of necrotic tissue-derived epitopes to directly activate cytolytic CD8 Tcells. The mature plaque (necrotic, containing dendritic cells and CD8 Tcells) could offer the ideal environment for cross-presentation, resulting in cytotoxic immunity and plaque destabilization. Ldlr(-/-) mice were transplanted with batf3(-/-) or wt bone marrow and put on a western type diet. Hematopoietic batf3 deficiency sharply decreased CD8α(+) DC numbers in spleen and lymph nodes (>80%; P < 0,001). Concordantly, batf3(-/-) chimeras had a 75% reduction in OT-I cross-priming capacity in vivo. Batf3(-/-) chimeric mice did not show lower Tcell or other leukocyte subset numbers. Despite dampened cross-presentation capacity, batf3(-/-) chimeras had equal atherosclerosis burden in aortic arch and root. Likewise, batf3(-/-) chimeras and wt mice revealed no differences in parameters of plaque stability: plaque Tcell infiltration, cell death, collagen composition, and macrophage and vascular smooth muscle cell content were unchanged. These results show that CD8α(+) DC loss in hyperlipidemic mice profoundly reduces cross-priming ability, nevertheless it does not influence lesion development. Taken together, we clearly demonstrate that CD8α(+) DC-mediated cross-presentation does not significantly contribute to atherosclerotic plaque formation and stability.


Asunto(s)
Aterosclerosis/inmunología , Antígenos CD8/inmunología , Hiperlipidemias/inmunología , Placa Aterosclerótica/inmunología , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Aterosclerosis/genética , Aterosclerosis/patología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Epítopos/inmunología , Humanos , Hiperlipidemias/genética , Hiperlipidemias/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Ratones , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Receptores de LDL/genética , Proteínas Represoras/genética , Bazo/inmunología , Bazo/patología , Linfocitos T/inmunología , Linfocitos T/patología
17.
Mol Ther ; 23(7): 1189-1200, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25896247

RESUMEN

Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair. In injured ϕIGF-1 CKO mouse muscle, accumulation of CD206+ macrophages was impaired, while an increase in Ly6C+ monocytes/macrophages was favored. Transcriptional profiling uncovered inflammatory skewing in ϕIGF-1 CKO macrophages, which failed to fully induce a reparative gene program in vitro or in vivo, revealing a novel autocrine role for IGF-1 in modulating murine macrophage phenotypes. These data establish local macrophage-derived IGF-1 as a key factor in inflammation resolution and macrophage polarization during muscle regeneration.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/biosíntesis , Músculo Esquelético/crecimiento & desarrollo , Regeneración/genética , Cicatrización de Heridas , Animales , Comunicación Autocrina/genética , Regulación del Desarrollo de la Expresión Génica , Inflamación/genética , Inflamación/patología , Factor I del Crecimiento Similar a la Insulina/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Monocitos/metabolismo , Músculo Esquelético/metabolismo
19.
Cell Mol Life Sci ; 70(20): 3847-69, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23430000

RESUMEN

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 16.7 million deaths each year. The underlying cause of the majority of CVD is atherosclerosis. In the past, atherosclerosis was considered to be the result of passive lipid accumulation in the vessel wall. Today's picture is far more complex. Atherosclerosis is considered a chronic inflammatory disease that results in the formation of plaques in large and mid-sized arteries. Both cells of the innate and the adaptive immune system play a crucial role in its pathogenesis. By transforming immune cells into pro- and anti-inflammatory chemokine- and cytokine-producing units, and by guiding the interactions between the different immune cells, the immune system decisively influences the propensity of a given plaque to rupture and cause clinical symptoms like myocardial infarction and stroke. In this review, we give an overview on the newest insights in the role of different immune cells and subtypes in atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Comunicación Celular , Inflamación/patología , Placa Aterosclerótica/patología , Inmunidad Adaptativa , Presentación de Antígeno , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Adhesión Celular , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Espumosas/inmunología , Células Espumosas/patología , Humanos , Inmunidad Innata , Interferón gamma/inmunología , Metabolismo de los Lípidos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Placa Aterosclerótica/metabolismo
20.
Circ Res ; 109(12): 1387-95, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22021930

RESUMEN

RATIONALE: Unlike conventional dendritic cells, plasmacytoid DCs (PDC) are poor in antigen presentation and critical for type I interferon response. Though proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive. OBJECTIVE: To investigate the role of PDC in atherosclerosis. METHODS AND RESULTS: We show that PDC are scarcely present in human atherosclerotic lesions and almost absent in mouse plaques. Surprisingly, PDC depletion by 120G8 mAb administration was seen to promote plaque T-cell accumulation and exacerbate lesion development and progression in LDLr⁻/⁻ mice. PDC depletion was accompanied by increased CD4⁺ T-cell proliferation, interferon-γ expression by splenic T cells, and plasma interferon-γ levels. Lymphoid tissue PDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the PDC suppressive effect on T-cell proliferation. CONCLUSIONS: Our data reveal a protective role for PDC in atherosclerosis, possibly by dampening T-cell proliferation and activity in peripheral lymphoid tissue, rendering PDC an interesting target for future therapeutic interventions.


Asunto(s)
Aterosclerosis/patología , Aterosclerosis/fisiopatología , Linfocitos T CD4-Positivos/patología , Proliferación Celular , Células Dendríticas/patología , Células Dendríticas/fisiología , Animales , Anticuerpos Monoclonales/farmacología , Aterosclerosis/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...